Linear Algebra II
 02/03/2020, Monday, 19:00-21:00

$1 \quad(6+7+7=20 \mathrm{pts})$
Inner product spaces

Consider the vector space $\mathbb{R}^{2 \times 2}$. Let S be the linear subspace of $\mathbb{R}^{2 \times 2}$ spanned by the matrices M_{1} and M_{2} given by

$$
M_{1}:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], \quad M_{2}:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

(a) Show that $\langle A, B\rangle:=\operatorname{trace}\left(A^{T} B\right)$ defines an inner product on $\mathbb{R}^{2 \times 2}$.
(b) Determine an orthonormal basis for the subspace S with respect to this inner product
(c) Determine the best approximation of the matrix $M:=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ in the subspace S. Here, a, b, c and d are given real numbers.
$2(8+4+4+4=20$ pts $)$
Least squares approximation

For a given positive integer n, let P_{n} be the vector space of all real polynomials $p(x)$ with degree less than or equal to $n-1$, i.e.

$$
P_{n}=\left\{p(x) \mid p(x)=p_{0}+p_{1} x+p_{2} x^{2}+\ldots+p_{n-1} x^{n-1}, p_{i} \in \mathbb{R}\right\}
$$

Let $c_{1}, c_{2}, \ldots c_{n}$ be n distinct real numbers. For any $p(x) \in P_{n}$ define $\tilde{p} \in \mathbb{R}^{n}$ by

$$
\tilde{p}:=\left(\begin{array}{c}
p\left(c_{1}\right) \\
p\left(c_{2}\right) \\
\vdots \\
p\left(c_{n}\right)
\end{array}\right)
$$

(a) For any pair of polynomials $p(x), q(x) \in P_{n}$, define $\langle p(x), q(x)\rangle:=\tilde{p}^{T} \tilde{q}$. prove that $\langle\cdot, \cdot\rangle$ defines an inner product on P_{n}.
In the remainder of this problem, take $n=3$ and $c_{1}=-1, c_{2}=0, c_{3}=1$.
(b) Show that the polynomial 1 and x are orthogonal.
(c) Determine an orthonormal basis of the subspace P_{2} of P_{3}.
(d) Compute the orthogonal projection $p(x)$ of the polynomial x^{2} onto the subspace P_{2}.

Let A be a real $n \times n$ matrix. Define a new matrix M by $M=A+i A^{T}$
(a) Show that $M^{H}=-i M$
(b) Prove that M is unitarily diagonalizable
(c) Show that the eigenvalues of M lie on the line $\{x+i x \mid x \in \mathbb{R}\}$
$4(3+8+8+6=25 \mathrm{pts})$
Hermitian matrices
Let $A \in \mathbb{C}^{n \times n}$ and let Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of $A^{H} A$.
(a) Show that $A^{H} A$ is Hermitian.
(b) Show that $A^{H} A$ and $A A^{H}$ have the same nonzero eigenvalues.
(c) Show that $\lambda_{i} \geqslant 0$ for all i.
(d) Show that if A has linearly independent columns then $\lambda_{i}>0$ for all i.

10 pts free

