Linear Algebra II 02/03/2020, Monday, 19:00 - 21:00

(6 + 7 + 7 = 20 pts)1

Inner product spaces

Consider the vector space $\mathbb{R}^{2\times 2}$. Let S be the linear subspace of $\mathbb{R}^{2\times 2}$ spanned by the matrices M_1 and M_2 given by

$$M_1 := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \quad M_2 := \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- (a) Show that $\langle A, B \rangle := \operatorname{trace}(A^T B)$ defines an inner product on $\mathbb{R}^{2 \times 2}$.
- (b) Determine an orthonormal basis for the subspace S with respect to this inner product
- (c) Determine the best approximation of the matrix $M := \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ in the subspace S. Here, a, b, c and d are given real numbers.

2
$$(8+4+4+4=20 \text{ pts})$$

For a given positive integer n, let P_n be the vector space of all real polynomials p(x) with degree less than or equal to n-1, i.e.

$$P_n = \{ p(x) \mid p(x) = p_0 + p_1 x + p_2 x^2 + \ldots + p_{n-1} x^{n-1}, \ p_i \in \mathbb{R} \}$$

Let $c_1, c_2, \ldots c_n$ be *n* distinct real numbers. For any $p(x) \in P_n$ define $\tilde{p} \in \mathbb{R}^n$ by

$$\tilde{p} := \begin{pmatrix} p(c_1) \\ p(c_2) \\ \vdots \\ p(c_n) \end{pmatrix}$$

(a) For any pair of polynomials $p(x), q(x) \in P_n$, define $\langle p(x), q(x) \rangle := \tilde{p}^T \tilde{q}$. prove that $\langle \cdot, \cdot \rangle$ defines an inner product on P_n .

In the remainder of this problem, take n = 3 and $c_1 = -1, c_2 = 0, c_3 = 1$.

- (b) Show that the polynomial 1 and x are orthogonal.
- (c) Determine an orthonormal basis of the subspace P_2 of P_3 .
- (d) Compute the orthogonal projection p(x) of the polynomial x^2 onto the subspace P_2 .

Least squares approximation

Let A be a real $n \times n$ matrix. Define a new matrix M by $M = A + iA^T$

- (a) Show that $M^H = -iM$
- (b) Prove that M is unitarily diagonalizable
- (c) Show that the eigenvalues of M lie on the line $\{x + ix \mid x \in \mathbb{R}\}$

$4 \quad (3+8+8+6=25 \text{ pts})$

Hermitian matrices

Let $A \in \mathbb{C}^{n \times n}$ and let Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the eigenvalues of $A^H A$.

- (a) Show that $A^H A$ is Hermitian.
- (b) Show that $A^{H}A$ and AA^{H} have the same nonzero eigenvalues.
- (c) Show that $\lambda_i \ge 0$ for all *i*.
- (d) Show that if A has linearly independent columns then $\lambda_i > 0$ for all i.

10 pts free